Tgo

用户手册

被RGBlink®

目录

声明	2
声明/担保与赔偿	2
安全操作概要	3
安装安全概要	4
第1章 产品简介	5
1.1 随附配件	5
1.2 产品概述	6
1.2.1 前面板图示	7
1.2.2 左面板图示	7
1.2.3 右面板图示	8
1.2.4 外形尺寸图	9
第2章 产品安装	10
2.1 插入信号源	10
2.2 插入电源	10
2.3 设备上电	10
第3章 产品使用	11
3.1 设备连接	11
3.1 设备控制	12
第4章 订购编码	17
4.1 产品	17
第5章 技术支持	18
5.1 联系我们	18
第6章 附录	19
6.1 规格	19
6.2 术语和定义	22
6.3 修订记录	35

首先感谢您选购我们的产品!

为了让您迅速掌握如何使用这款视频处理器,我们为您送上了详细的 产品使用手册。您可以在使用视频处理器之前阅读产品介绍以及使用 方法,请仔细阅读我们所提供给您的所有信息,以便于您正确地使用 我们的产品。

声明

声明/担保与赔偿

声明

该设备经过严格测试,符合电子类数码设备的标准,根据 FCC 第 15 部分的规定,这些限制是为了合理地防止设备在商业环境中操作时的有害干扰。如果没有安装和使用规定的指导手册,该设备的产生、使用和放射无线电频率,可能会对无线电通讯造成有害干扰。闲杂人员若擅自操作造成伤害,将自行负责!

担保与赔偿

视诚提供了作为法定保障条款组成部分,与完善生产相关的保证书。 收到产品后,买家必须立即检查产品,如在运输途中或因材料和制造故障而导致的受损,请以投诉的书面方式通知视诚。

保证期间的日期开始转移风险,在特殊的系统和软件调试期间,最迟30天内转移风险。收到合理通告,视诚可以修复故障或在适当的时期提供自己的自主判断的解决方案。如果此措施不可行或失败,买家可以要求降价或取消合同。其他所有的索赔,尤其那些关于视诚软件操作及提供的服务的直接或间接损害,作为系统或独立服务的一部分,将被视为无效损害,归因于书面担保缺乏性能,视为意图不明或有重大过失。

如果买家或第三方收到货物后自行修改变更,或使用不当,尤其是授

权的系统操作不当,风险转移后,产品收到非合同中允许的影响,买 家的索赔将视为无效。由于买家提供的程序设计或电子电路图如接口 而产生的系统故障不包含在担保范围内。正常磨损和维护不在视诚提 供的担保中。

买家必须遵照本手册指定的环境条件和维修维护条例。

安全操作概要

安全操作概要只针对操作人员。

请勿开盖

本产品无客户自我操作服务,拆盖可能会有暴露危险的电压,为防止人身事故的发生,请勿自行解开上盖板。

正确使用电源

本产品通常不支持高于 230 伏的电源导体,包括地接导体。为了更安全的操作,建议使用地接的方式。

正确接地

本产品通过接地导体或电源线接地。为了避免电流冲击,在连接产品输入或输出端前请将电源线插入接有电线的插座。

电源线中接地导体的保护性接地在安全操作中是必不可少的。

使用适当的电源线

产品只能使用指定的电源线和接口。并且只能在电源线状态良好的情况下使用。改变指定的电源线和接口需找合格的技术人员。

使用适当的保险丝

避免火灾! 在额定电压电流的情况下,只能使用相同类型的保险丝。 替换指定的保险丝请找合格的技术人员。

远离易燃易爆危险物品

远离易燃易爆物品,不要在易爆的环境下操作本产品!

安装安全概要

安全保护措施

在所有的Tgo处理器的安装程序里,请遵循以下安全细则避免造成自身以及设备的损坏。

为了保护用户免受电击,请确保底盘通过地线接地,提供交流电源。 插座应该装在设备附近以利于连接。

拆箱和检验

在打开Tgo处理器包装箱之前,请检查是否损坏。如果有损坏,请及时通知承运人以确认赔付相关事宜。开箱后,请对照包装明细再次确认。如果发现配件不全,请及时联系相应的销售人员。

一旦你除去所有包装并确认所有的组件都齐全,并查看内置系统确保 在运输过程中没有受到损坏。如果损坏,请立即通知承运人做出所有 的索赔调整。

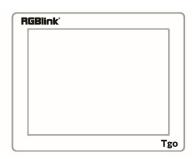
预备场地

安装Tgo显屏控制器时候应保证所在的环境整洁,光亮,防静电,有 足够的功率,通风以及空间等要素。

第1章 产品简介

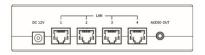
1.1 随附配件

注: 电源线可选国标、美标、欧标等电源标准


1.2 产品概述

Tgo 是一款紧凑型桌面控制平台,采用 8 英寸触摸 LCD 屏显示,也支持 HDMI 2.0 扩展输出。触摸屏上显示操作按键,扩展屏上显示 RGBLink 的 XPOSE 2.0 的操作界面。4 路千兆网口支持程序下载升级,网络远程控制,H. 264/H. 264 解码回显。USB 3.0 接口支持媒体存储,USB 2.0 支持鼠标和键盘。使用鼠标和键盘可以通过在扩展屏上操作控制视频处理器设备。

图为 Tgo 的系统连接简图


1.2.1 前面板图示

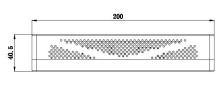
液晶面板

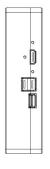
触摸屏,用于显示操作按键

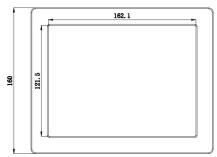
1.2.2 左面板图示

LAN	千兆网口,用于连接视频处理器设备触
1~4	
DC 12V	电源接口
AUDIO	外接音频接口
OUT	

1.2.3 右面板图示


USB	用于程序升级,接鼠标或者键盘
2.0	
USB	用于设备参数备份及调用以及设备参数场景的导入
3.0	
AUDIO	外接音频接口
OUT	


Tgo 用户手册 8


1.2.4 外形尺寸图

下图为Tgo的外形尺寸图,供用户参考:

设备尺寸:200mm×160mm×40.5mm

第2章 产品安装

2.1 插入信号源

使用网线连接 Tgo 和视频处理器,或者将视频处理和 Tgo 都连入同个局域网的路由器。

使用 HDMI 线连接 Tgo 和显示器。

2.2 插入电源

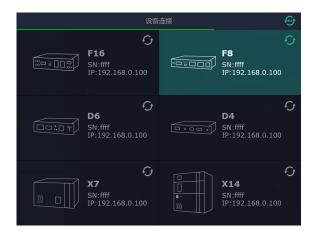

将电源适配器插上电源插座,将 DC 接口插入 Tgo 的 DC 接口。

2.3 设备上电

当 Tgo 接通电源后,会自动开机进入设备连接界面。

3.1 设备连接

1. Tgo 上电后, LCD 触摸屏进入连接设备界面



点击右上角 ALL 图标刷新可连接的设备列表。 扩展屏(Monitor)上显示 XPOSE 2.0 拓扑图。

将鼠标接入 Tgo 右侧的 USB3.0 或者 USB2.0 可以使用鼠标点击 Tgo 的 LCD 屏和扩展屏上图标。

2. 点击设备列表图标的右上角的 连接设备。

3.1 设备控制

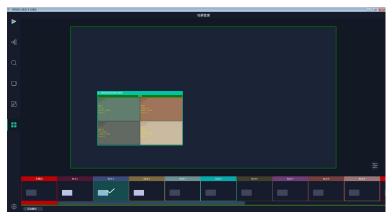
连接上设备后,Tgo 界面进入操作界面。在Tgo 上可以进行PST,PGM,SAVE,LOAD,PVW操作。

PST	PGM	SAVE	LOAD	PVW
1	2	3	4	Ð
5	6	7	8	Ф
9	10	11	12	CUT
13	14	15	16	TAKE

每个功能有对应的颜色,每个功能下亮起的数字,代表当下这个操作对应的容器或场景。

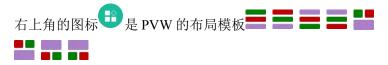
如在PST下有1个容器,则PST下1亮起绿色。

PST	PGM	SAVE	LOAD	PVW
1	2	3	4	Þ
5	6	7	8	Ф
9	10	11	12	CUT
13	14	15	16	TAKE

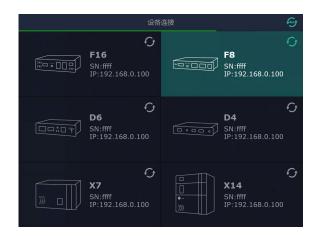

如在 PGM 下有 3 个容器,则 PGM 下 1,2,3 亮起红色

PST	PGM	SAVE	LOAD	PVW
1	2	3	4	Ð
5	6	7	8	O
9	10	11	12	CUT
13	14	15	16	TAKE

在 PST, PGM 下亮起的数字代表各自的分容器。如在 PGM 下点去容器 2 和 3, 再点击 CUT 或者 TAKE, 主输出的容器 2 和容器 3 上显现的内容保持不变,容器 1 切换到下个场景。 LOAD 下, 亮起的数字代表当前已保存的可切出的场景。


PST	PGM	SAVE	LOAD	PVW
1	2	3	4	Ð
5	6	7	8	Ф
9	10	11	12	CUT
13	14	15	16	TAKE

例如数字 2 亮起,则代表此时 PST 上的场景为 BANK2.


对应的扩展屏 XPOSE 2.0 进入场景管理。

点击 PVW 可以在 Tgo 上监看 PST, PGM, 信号源的画面。 PST:绿色, PGM: 红色,信号源:紫色。

绿色电源 图标长按,关闭 Tgo 和 Tgo 所控的设备

点击返回 , Tgo 回到设备搜索界面,

扩展屏显示 XPOSE 2.0 的设备搜索界面。

第4章 订购编码

4.1 产品

250-0001-01-0 Tgo

第5章 技术支持

5.1 联系我们

第6章 附录

6.1 规格

接口					
输入	H.264	4×RJ45			
输出 (扩展	HDMI 2.0	1×HDMI-A			
屏)					
音频		1×3.5mm Stereo Jack			
通讯	LAN	4×RJ45			
	USB 3.0	2×USB-A			
	USB 2.0	1×USB-A			
性能					
输入分辨率	H.264				
	176×144 240×180 320×180 320×240				
	320×256 352×228 352×480 400×224				
	400×320 480×270 4	480×272 480×320			

	480×360 480×480 544×480 608×448						
	640×360 640×480 704×576 720×404						
	720×480	720×480 720×540 720×576 850×480					
	1024×576	1280×720 1680×1056 1920×1080					
输出分辨率	HDMI						
(扩展屏)	SMPTE	720p@23.98/24/25/29.97/30/50/59.					
		94/60					
		1080i@23.98/24/25/29.97/30/50/59					
		.94/60					
		1080p@23.98/24/25/29.97/30/50/5					
		9.94/60 2160p@24/30/50/60					
	VESA	800×600@60 1024×768@60					
		1280×768@60 1280×1024@60					
		1366×768@60 1600×1200@60					
		1920×1080@60 2048×1152@60					
		2560×1600@60 3840×2160@60					
支持标准	H.264	MPEG-4/AVC					
	HDMI	2.0					
	•						

	USB	3.0
常规		
输入电压		DC 12V/1.5A
温度	-0 ~45℃	
湿度	-10%~85%	
重量	设备重量	1.5kg
	包装重量	3kg
尺寸	设备尺寸	200mm×162mm×40.5mm
	包装尺寸	308mm×269mm×150mm

6.2 术语和定义

- RCA: RCA 端子(RCA jack, 或 RCA connector),由美国无线电公司开发,俗称梅花头、莲花头,是一种应用广泛的端子,可以应用的场合包括了模拟视频/音频(例: AV端子(三色线))、数字音频(例: S/PDIF)与色差分量(例: 色差端子)传输等。
- BNC: BNC 接头,是一种用于同轴电缆的连接器,全称是 Bayonet Nut Connector(刺刀螺母连接器,这个名称形象 地描述了这种接头外形),又称为 British Naval Connector (英国海军连接器,可能是英国海军最早使用这种接头)或 Bayonet Neill Conselman(Neill Conselman 刺刀,这种 接头是一个名叫 Neill Conselman 的人发明的)。
- CVBS: CVBS 或者复合视频信号,是一种不含音频的模 拟视频信号,通常用于传输标准视频信号。在日常使用中通常是用 RCA 连接头;在专业使用中则用 BNC 的连接头。

● YPbPr: 模拟分量视频接口

- VGA: 是 IBM 在 1987 年随 PS/2 机一起推出的一种视频传输标准。是一种常用的模拟视频信号。具有分辨率高、显示速率快、颜色丰富等优点,在彩色显示器领域得到了广泛的应用。
- DVI: 数字视频接口,是由 DDWG 推出的接口标准。 分

为两种不同的接口,一个是 24 针的 DVI-D, 只传输数字信号; 另外一种是 29 针的 DVI-I, 可同时兼容数字和模拟信号。

- SDI: 数字信号串行接口 (Serial digital interface), 串行接口是把数据的各个比特相应的数据通过单一通道 顺 序传达的接口。SDI 包含 SD SDI、HD SDI、3G SDI、6G SDI、 12G SDI 等不同版本格式接口。
- HD-SDI: 高清串行数字接口,接口标准 SMPTE292M,传输数率 1.485Gbps,支持分辨率 720P, 1080i.
- **3G-SDI**: 2006 发布,接口标准 SMPTE424M,传输数率 2.97Gbps,支持分辨率 1080p@60Hz。
- 6G-SDI: 2015 年发布,接口标准 SMPTE ST-2081,传输数率 6Gbit/s, 支持分辨率 2160p@30Hz。
- **12G-SDI**: 2015 年发布,接口标准 SMPTE ST-2082,传输数率 6Gbit/s, 支持分辨率 2160p@30Hz
- HDMI: 高清多媒体接口,是一种全数字化视频和声音发送接口,在单根线缆上发送传输未压缩的音频及视频信号。
- HDMI 1.3: 2006 年 6 月 HDMI 1.3 更新,带来最大的变化是将单链接带宽频率提升到 340MHz,传输速率达到 10.2Gbps,将 HDMI1.1、1.2 版本所支持的 24 位色深大幅扩充至 30 位、36 位及 48 位 (RGB 或 YCbCr)。HDMI

1.3 支持 1080P。

- HDMI 1.4: 2009 年 6 月发布 HDMI 1.4 版本已经可以支持 4K 了,但是受制于带宽 10.2Gbps,最高只能达到 3840×2160 分辨率和 30FPS 帧率。相较于 HDMI 1.3 主要增加了三个功能,HEC(网络功能),ARC(音频回传)和支持 3D。
- HDMI 2.0: 2013 年 9 月发布,增加带宽到 18Gbit/s,支持即插即用和热插拔,支持 3840×2160 分辨率和 50FPS、60FPS 帧率。同时在音频方面支持最多 32 个声道,以及最高 1536kHz 采样率。
- HDMI 2.0a: 发布于 2015 年 4 月 8 日,增加支持静态数据元 HDR 的功能。
- HDMI 2.0b:发布于 2016 年 3 月,支持 HDR 视频传输和 HLG 静态数据元。
- HDMI 2.1: 发布于 2017 年 11 月 8 日,最新的 HDMI 规格支持一系列更高的视频分辨率、包括 8K60 和 4K120 在内的刷新频率,以及高达 10K 的分辨率。同时支持动态HDR 格式,带宽能力增加到 48Gbps
- DP: 全称 Displayport, 是属于 VESA 标准下的信号接口, 同时兼容音频和视频, DP 目前包含 DP1.1、DP1.1a、DP1.2 等信号接口格式版本, 其对应的信号分辨率由 2K 到 4K 逐渐 递增。

- DP 1.1: 发布于 2007 年 4 月 2 日,2008 年 1 月 11 日通过 1.1a. DP 1.1 带宽 10.8Gbps(数据率 8.64Gbps),支持1920×1080@60Hz.
- DP 1.2:发布于 2010 年 1 月 7 日有效带宽 17.28Gbps,支持更高的分辨率和刷新率,最高支持 3840×2160@60Hz
- DP 1. 4: 发布于 2016 年 3 月 1 日, 整体传输数率 32. 4Gbps, 增加视觉无损压缩编码功能 DSC, 使之可支持 8K UHD 7680× 4320@60Hz 或者 4K UHD 3840× 2160@120Hz, 30 位色深。
- DP 2.0: 发布于 2019 年 6 月 26 日, 传输带宽 77. 4Gbps, 可支持 16K (15,360 x 8,460) @60Hz。
- **光纤**:是光导纤维的简写,是一种由玻璃或塑料制成的 纤维,可作为光传导工具。
- **多模光纤**: 在给定的工作波长上传输多种模式的光纤, 通常多模光纤的芯径较大,光纤的带宽窄,色散大,损耗也 大,只适于中短距离和小容量的光纤通信系统。
- **单模光纤**:中心玻璃芯很细(芯径一般为 9 或 10 μ m),只能传一种模式的光纤。因此,其模间色散很小,适用于远程通讯,通常用于传输超过 1000 米的距离。
- **SFP 光模块**:是 SFP 封装的热插拔小封装模块,最高速率可达 10.3G,接口为 LC。SFP 光模块主要由激光器构

成。

- 光纤接口: 是用来连接光纤线缆的物理接口。其原理是利用了光从光密介质进入光疏介质从而发生了全反射。通常有 SC、ST、FC、LC 等几种类型。
- SC: SC 接口也叫方形接口,日本电报电话公司(NTT)研发,是一种推拉式连接的光纤接口,采用 2.5mm 采用 2.5 陶瓷插针,目前主要用于单纤光模跳线,模拟信号,GBIC 和 CATV,是目前最常见的一种光纤接口之一。
- LC: LC 接口是一种使用 1.25mm 插针的小型的封装接口,卡扣式连接,由于体积小适用于高密度的连接,如 XFP, SFP 和 SFP++的收发器。
- FC: 圆型带螺纹的接口,2.5mm 插针,NTT 开发于 1988 年,最早是用来提高硬盘协议的传输带宽,侧重于数据的快速、高效、可靠传输,主要用于电话数据通讯,测量工具,单模机关发射器。
- **ST**: 圆形带卡扣锁紧结构的光纤接口, 2.5mm 插针, AT&T 开发于 1988 年。
- USB: 是英文 Universal Serial Bus (通用串行总线)的缩写,是一个定义线材,接口和通讯协议的外部总线标准,用于规范电脑与外部设备的连接和通讯和供电。

- USB 1.1: 1998 年 9 月, USBIF 提出 USB1.1 规范, 频 宽为 12Mbps。全速(Full-Speed)USB, 目前已经比较少用。
- USB 2.0: 高速(High-Speed)USB, 2000 年提出, 频宽为 480Mbps 即 60 MB/s, 但实际传输速度一般不超过 30 MB/s, 目前采用这种标准的 USB 设备比较多。
- USB 3.2: 超速 USB, 2019 年 2 月 26 日 USBIF 提出 USB 3.2 包含了 3 个版本, 3.2 Gen 1(原名 USB 3.0), 3.2 Gen 2(原名 USB 3.1), 3.2 Gen 2x2 (原名 USB 3.2), 速度分别达到 5Gbps, 10Gbps, 20Gbps。

USB 版本和接口

	Туре	Туре	Mini	Mini	Micro-	Micro-	Туре
	Α	В	Α	В	Α	В	С
USB			[00000	0000	[00000]	[00000]	
2.0							
USB	FULLA					[0000]	
3.0							
USB							000000000000000000000000000000000000000
3.1&							
3.2							

- NTSC: NTSC 制式在北美和世界其他一些地区的国家电视标准委员会在 20 世纪 50 年代创建的彩色视频标准。颜色信号,必须用黑色和白色的电视机兼容。 NTSC 制式采用的隔行扫描视频信号,525 行的 分辨率和刷新率为每秒60 场。每帧由 262.5 行,每行的两个领域,在每秒 30 帧的有效的速度运 行。
- PAL: 英文 Phase Alteration Line 的缩写,意思是逐行倒相,也属于同时制。它对同时传送的两个色差信号中的一个色差信号采用逐行倒相,另一个色差信号进行正交调制方式。这样,如果在信号传输过程中发生相位失真,则会由于相邻两行信号的相位相反起到互相补偿作用,从而有效地克服了因相位失真而起的色彩变化。因此,PAL制对相位失真不敏感,图像彩色误差较小,与黑白电视的兼容也好。
- SMPTE: 位于美国的电影电视工程师协会,是一个全球性的组织,为电影,电视,视频的视觉通信设置基础带宽标准。 SMPTE 时间码,目前在影音工业中被广泛应用。该码用于设备间驱动的时间同步,计数方式,主要参数格式是:小时,分钟,秒,帧。通常表示为1080P、720P、1080i等.
- VESA: 是制定计算机和小型工作站视频设备标准的国际组织,1989年由 NEC 及其他 8 家显卡制造商赞助成立。也称为电脑制式,通常表示1920X1080@60等
- HDCP: 高带宽数字内容保护技术,是由好莱坞与半导体界巨人 Intel 合作开发,保护未经压缩的数字音视频内容,适用于高速的数字视频接口(Displayport、HDM1、DVI),

内容加扰实现保护。HDCP设计为内容消费链中的最后一个环节,从内容源设备到显示设备,HDCP不允许完全内容拷贝行为,即拷贝控制信息CC1只有禁止拷贝状态。在系统更新方面,HDCP采用吊销列表来屏蔽已经被窃取的设备私钥。

- HDBaseT: 一种无损压缩传输的视频标准 (HDMI 信号),HDbaseT 1.0 支持最高 20Gbps 的传输速率,能完美地支持FULL 3D 和 4K x 2K 视频格式,传输采用普通的 CAT5e/6 网络线缆进行无压缩传输,连接器也采用普通的 RJ45 接头,而传输距离达到了 100 米,此外,还提供以以太网功能、100W的供电能力 (PoE) 和其他控制信号通道。
- ST2110: SMPTE 的 ST2110 标准描述了如何通过 IP 网络传输数字视频。无压缩的视频信号和音频信号以及其他的数据通过不同的码流传输。SMPTE ST 2110 主要是为需要高画质和高灵活性的广播制作和分发而制定的。
- SDVoE:是一种使用 TCP/IP 以太网基础设施进行低延迟率传输,分发和管理 AV (音视频) 信号的方法。通常在集成应用上使用。SDVoE 网络架构基于现成的以太网交换机,因此与传统方法相比,可显着降低成本并提高系统灵活性和可扩展性。
- Dante AV: Dante 是由澳大利亚 Audinate 研发的专利技术, Digital Audio Network Though Ethernet, 通过以太网传输数字音频网络,使用第三层 IP 数据包通过以太网传输未压缩的 8 通道音频。这项技术包含了传输协议,标准化的硬件和软件。Dante AV 是同一家公司开发的整合之前的

Dante 技术, 通过 IP 网络同步传输音频和视频的解决方案。

- NDI: . NewTek 开发的 ND 的一种无版税标准,Network Device Interface, 网络设备接口,就是一个 IP 信号源,所有的 NDI 输出都是通过网络中传输,所有其他设备都可以查看并访问制作切换器、采集系统、媒体服务器等网络中任何启用 NDI 设备上的内容,让实时制作的信号源比以前任何时候都要丰富,适用于互连制作工作流的应用程序。
- RTMP: Real Time Messaging Protocol (实时消息传输协议),它是一种设计用来进行实时数据通信的网络协议,主要用来在Flash/AIR平台和支持RTMP协议的流媒体/交互服务器之间进行音视频和数据通信。
- RTSP: Real Time Streaming Protocol 是由 Real Network 和 Netscape 共同提出的如何有效地在 IP 网络上传输流媒体数据的应用层协议。RTSP 对流媒体提供了诸如暂停,快进等控制,而它本身并不传输数据,RTSP 的作用相当于流媒体服务器的远程控制。
- MPEG: (运动图像专家组)根据国际标准组织的主持下的标准委员会工作的算法标准,使数字压缩,存储和传输的图像信息,如运动的视频,CD 质量的音频,并在CD-ROM的宽带控制数据移动。MPEG 算法提供视频图像的帧压缩,并能有一个有效的 100: 1 到 200: 1 的压缩率。

- H. 264: 也就是 AVC (高级视频编码) 或者 MPEG-4i, 一种常见的视频压缩标准。H. 264 标准由 ITU-T 和 MPEG 共同制定。
- H. 265: 也就是 HEVC(高效视频编码)H. 265 是 ITU-T VCEG 继 H. 264 之后所制定的新的视频编码标准,H. 265 旨在在有限带宽下传输更高质量的网络视频,仅需原先的一半带宽即可播放相同质量的视频,H. 265 标准也同时支持4K(4096×2160)和8K(8192×4320)超高清视频。H. 265 标准让网络视频跟上了显示屏"高分辨率化"的脚步。
- API:全称 Application Programming Interface,即应用程序编程接口。API 是一些预先定义函数,目的是用来提供应用程序与开发人员基于某软件或者某硬件得以访问一组例程的能力,并且无需访问源码或无需理解内部工作机制细节。API 就是操作系统给应用程序的调用接口,应用程序通过调用操作系统的 API 而使操作系统去执行应用程序的命令(动作)
- DMX512: DMX 协议是由美国舞台灯光协会(USITT)提出了一种数据调光协议,它给出了一种灯光控制器与灯具设备之间通信的协议标准。该协议的提出为使用数字信号控制灯光设备提供了一个良好的标准。DMX 协议也被视频控制器广泛地采用,DMX512 由双绞线和 5 针 XLR 接口传输。
- ArtNet: 是一种基于 TCP/IP 协议栈的以太网协议。目的 是在于使用标准的网络技术允许在广域内传递大量的

DMX512 数据。其可以工作在 DHCP 管理地址方案或者使用静态地址。

- MIDI: 是 Musical Instrument Digital Interface 的缩写,意思是音乐设备数字接口。 这种接口技术的作就是使电子乐器与电子乐器,电子乐器与电脑之间通过一种通用的通讯协议进行通讯, 这种协议自然就是 MIDI 协议了。MIDI 传输的不是声音信号, 而是音符、控制参数等指令,而这些音符、控制指令等典型的传输是由 5 针 DIN 接口和双脚线组成。
- OSC: 开放声音控制 (OSC) 是一种用于计算机,声音合成器和其他多媒体设备之间通信的协议,该协议针对现代联网技术进行了优化。 将现代网络技术的好处带到电子乐器的世界中,OSC 的优势包括互操作性,准确性,灵活性以及增强的组织和文档编制能力,原理和 UDP 差不多,都是服务端将信息推送(广播)到前端或者另外一个数据接收系统,只不过对传输格式做了进一步的封装。就像电视台广播一样,如果你的电视接收端没有打开,那么这一段时间的数据将会丢失,不可复现。
- **亮度:** 通常是指视频信号在不考虑颜色的显示屏上显示的数量或强度,有时也被称为"黑电平"。
- 对比度: 高的光输出比率是相对于低的光输出水平而言, 理论上来说, 电视系统的对比度至少在 100: 1, 如果不是在 300: 1, 会有一定的局限性。最佳 观看条件应该在 30: 1 到 50: 1 的对比度范围内。

- **色温**:代表光源色彩质量,通常用开氏度(K)来表示,色温越高,光越蓝,色温越低,光越红。在 A/V 行业中,基准色温为:5000°K、6500°K 和 9000°K。
- **饱和度**:(纯度)可定义为彩度除以明度,与 彩度同样表征彩色偏离同亮度灰色的程度。 注意与彩度完全不是同一个概念。但由于其 代表的意义与彩度相同,所以才会出现视彩 度与饱和度为同一概念的情况。饱和度是指 色彩的鲜艳程度,也称为色彩的纯度。饱和 度取决于该色中含色成分和消色成分(灰色) 的比例。含色成分越大,饱和度越大;消色 成分越大,饱和度越小。
- Gamma:表示图像输入值与输出值关系的曲线,显像的输出和输入电压不成正比,其中二者的差异就是所谓的伽玛。
- Frame(帧): 一帧代表隔行扫描视频中的一个完整画面,它由 2 个字段或者两个交错隔行组成。在电影中,一帧代表一组成动态图像中的系列静态图片中的一幅。
- Genlock: 同步锁相指视频系统中各信号源 之间的同步工作 , 当两台 或两台以上同步相机连 用时 , 必须保证各同步相 机产生的同步信号同频、 同相。
- **黑场**:没有视频内容的视频信号,它包括垂直同步、水平同步以及色度猝发信号。黑场主要用于同步视频设备和视频输出对齐。
- 色同步: 彩色电视系统中位于复合视频信号后端的副载

波,它作为一种颜色同步信号为色度信号提供频 率和相位 参考。色同步在 NTSC 和 PAL 的频率分别是 3.58 兆赫和 4.43 兆赫。

- 彩条:用于系统校正和测试的标准参考图像,包含以下几种基本颜色(白色、黄色、青色、绿色、紫色、红色、蓝色和黑色)在 NTSC 制式的视频信号中,通常用 SMPTE 标准彩条;在 PAL 视频信号中,通常用 8 色彩条;在电脑显示器上,通常是用 2 行反转彩条。
- **无缝切换**:指信号源切换之间没有任何的延时,或者任何 的闪烁或者黑屏。
- Scaling:缩放,视频或计算机图形信号采用图形优化算法,在标准分辨率之间进行缩放或者在一定的标准分辨率下,设定一定的步长进行像素缩放的操作。
- PIP: 画中画,它是一个画面在另一个背景影像上的一种 屏幕设置(其特性为缩小尺寸) -- 或是别的画中画。画中 画可以通过程序进行缩放、镶边、设置阴影及混合。另外, 画中画还可以相互重叠,这取决于它们的视觉优先级。
- HDR: 高动态范围图像 (High-Dynamic Range, 简称 HDR), 可以提供更多的动态范围和图像细节, 根据不同的曝光时间的 LDR (Low-Dynamic Range, 低动态范围图像), 并利用每个曝光时间相对应最佳细节的 LDR 图像来合成最终 HDR 图像。它能够更好的反映出真实环境中的视觉效果。

- UHD: UHD 是(Ultra High Definition Television)的简写,代表"超高清电视",是 HD (High Definition 高清)、Full HD (全高清)的下一代技术。国际电信联盟(ITU)发布的"超高清 UHD"标准的建议,将屏幕的物理分辨率达到 3840×2160(4K×2K)及以上的显示称之为超高清,是普通FullHD (1920X1080) 宽高的各两倍,面积的四倍。
- EDID:扩展显示识别数据, EDID 是一个数据结构,用于通信的视频显示信息,包括原始分辨率和垂直间隔刷新率的要求。源设备将根据 EDID 数据来显示最佳的视频格式,确保良好的视频图像质量。

6.3 修订记录

下表列出了修改视频处理器用户手册的版本记录。

版本	时间	ECO#	描述	负责人
V1.0	2020-03-30	0000#	发布	Fanny